New Nanotechnology Technique Extends Fillings' Longevity


Nanotechnology (sometimes shortened to "nanotech") is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures with at least one dimension sized from 1 to 100 nanometres. Quantum mechanical effects are important at this quantum-realm scale. Nanotechnology is considered a key technology for the future. Consequently, various governments have invested billions of dollars in its future. The USA has invested 3.7 billion dollars through its National Nanotechnology Initiative followed by Japan with 750 million and the European Union 1.2 billion.

Nanotechnology is very diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. Nanotechnology entails the application of fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, microfabrication, etc.

Scientists debate the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in medicine, electronics, biomaterials and energy production. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials, and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted.

Tooth-colored fillings may be more attractive than silver ones, but the bonds between the white filling and the tooth quickly age and degrade. A Medical College of Georgia researcher hopes a new nanotechnology technique will extend the fillings' longevity.

"Dentin adhesives bond well initially, but then the hybrid layer between the adhesive and the dentin begins to break down in as little as one year," says Dr. Franklin Tay, associate professor of endodontics in the MCG School of Dentistry. "When that happens, the restoration will eventually fail and come off the tooth."

Half of all tooth-colored restorations, which are made of composite resin, fail within 10 years, and about 60 percent of all operative dentistry involves replacing them, according to research in the Journal of the American Dental Association.

"Our adhesives are not as good as we thought they were, and that causes problems for the bonds," Dr. Tay says.

To make a bond, a dentist etches away some of the dentin's minerals with phosphoric acid to expose a network of collagen, known as the hybrid layer. Acid-etching is like priming a wall before it's painted; it prepares the tooth for application of an adhesive to the hybrid layer so that the resin can latch on to the collagen network. Unfortunately, the imperfect adhesives leave spaces inside the collagen that are not properly infiltrated with resin, leading to the bonds' failure.

Dr. Tay is trying to prevent the aging and degradation of resin-dentin bonding by feeding minerals back into the collagen network. With a two year, $252,497 grant from the National Institute of Dental & Craniofacial Research, he will investigate guided tissue remineralization, a new nanotechnology process of growing extremely small, mineral-rich crystals and guiding them into the demineralized gaps between collagen fibers.

You can find more dental equipment and dental micro motor at zetadental.com.

 


Comments (0)

There are currently no comments on this post. Be the first one!


Add Comment


Login/Register

Already A Member? You can log into your account here.


First Name:
Last Last:
Email Address:

Select Username:
Select Password:
Verify Password:

Your Bio: (Optional. Introduce your self, and some of your work, interests and hobbies.)



Privacy Policy / Terms of Service / Accessibility Statement
© 2019 - periodictableontheweb.com. All Rights Reserved.